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Evaluating Engineering System Interventions

Wester C.H. Schoonenberg, Amro M. Farid

Abstract—Our modern life has grown to depend on many
and nearly ubiquitous large complex engineering systems.
Transportation, water distribution, electric power, natural
gas, healthcare, manufacturing and food supply are but
a few. These engineering systems are characterized by an
intricate web of interactions within themselves but also
between each other. Furthermore, they have a long-standing
nature that means that any change requires an intervention
into a legacy system rather than a new “blank-slate” system
design. The interventions themselves are often costly with
implications lasting many decades into the future. Conse-
quently, when it comes to engineering system interventions,
there is a real need to “get it right”. This chapter discusses
two types of engineering system interventions; namely those
that change system behavior and those that change system
structure. It then discusses the types of measurement that
can be applied to evaluating such interventions. More specif-
ically, it contrasts experimental, data-driven and model-
based approaches. It recognizes that only the last of these is
appropriate for interventions that change system structure.
Consequently, the chapter concludes with a taxonomy of
engineering system models including graphical models,
quantitative structural models and quantitative behavioral
models. The chapter concludes with a discussion of promis-
ing avenues for future research in the area; namely hetero-
functional graph theory and hybrid dynamic systems.

Index Terms—Engineering Systems, Intervention, Mea-
sures, Evaluation, Performance, Effectiveness

I. INTRODUCTION

This chapter provides an overview of the background,
context, and theory for evaluating engineering system
interventions. So far, the Engineering System Design
Handbook has provided: (1) background and motivation
for the engineering systems approach, (2) theory for
describing engineering systems, and (3) an overview of
intervention design for engineering systems. This chap-
ter concludes the third part of the handbook with the
background and framework to support the evaluation
of engineering system interventions. The first section
defines a point-of-departure for this chapter to enable
the study of the chapter as an independent work. The
section also refers to other chapters in the book to
provide context and other relevant material.

A. The emergence of engineering systems

In the context of 21% century grand challenges, the
field of engineering systems has emerged at the in-
tersection of engineering, management, and the social
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sciences. Over the past decades, engineering solutions
have evolved from engineering artifacts that have a
single function, to systems of artifacts that optimize
the delivery of a specific service, and then to engineer-
ing systems that deliver services within a societal and
economic context. In order to understand engineering
systems, a holistic approach is required that assesses
their impact beyond technical performance. Engineering
Systems are defined as:

Definition 1. Engineering System [1] A class of systems
characterized by a high degree of technical complexity,
social intricacy, and elaborate processes, aimed at fulfill-
ing important functions in society.

Furthermore, there are a number of characteristics
that distinguish engineering systems from other systems.
Engineering systems...

o ... exist in the real world. They always have physical
components, but are also likely to contain informa-
tional components.

o ... are artificial. Engineering systems are man-made,
but often integrate into the natural world.

e ... have dynamic properties. Engineering systems
change over time, and have a sense of temporality.

e ... have a hybrid state. The states of engineering
systems are usually both discrete and continuous.

e ... contain some human control.

Some types of systems with these characteristics
include electric power grids, transportation systems,
healthcare delivery systems, the energy-water nexus, etc.
This list is far from exhaustive and the reader will find
numerous other examples throughout the handbook.

The growth of engineering systems has been mostly
organic and incremental. Many of these systems have
been expanded or shrunk to match the changing (or
perceived) needs over time. This has caused inefficiencies
and unforeseen dynamics within those systems. The
successful implementation of engineering system inter-
ventions relies on rigorous evaluation for a future-proof
design.

B. The importance of evaluating engineering system inter-
ventions

As the complexity of engineering systems has evolved,
there is need for a deeper understanding of the de-
sign and operation of engineering systems. Interventions
were often designed and implemented with merely a
theoretical understanding of their impact. During the
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rise of the automobile, many transportation infrastruc-
ture systems were overhauled to facilitate this new mode
of transport [2]. However, the impact and outcomes of
such changes were often unforeseen by policy makers.
Today, we have the ability to much more accurately
evaluate and understand the impact of interventions in
engineering systems. Increased data and computational
resources enable evaluation of interventions both after
and before implementation [3].

The evaluation of interventions after implementation
was especially useful when the computational resources
to predict the outcomes of interventions were limited.
The results of previous interventions guided new in-
terventions and were eventually generalized as “rules-
of-thumb”. Furthermore, this type of evaluation also
helped “tune” (or salvage) the intervention to get the
best results. The downside of this trial-and-error ap-
proach is obvious; sometimes the interventions do not
perform as intended. The failure to perform may become
immediately obvious, but can also materialize when the
system has to function under extreme circumstances [4].
An example of the latter scenario is the failure of the
electric rail system in New York City during hurricane
Sandy. The rain ahead of the hurricane flooded several
transformers and the power supply for the rail system
was interrupted. As a result, the rail system failed and
evacuation of lower Manhattan was severely interrupted.
It took a major hurricane to demonstrate the limitations
of the electrification of the rail system, whereas it had
been operated successfully for decades before.

In order to improve interventions before they are
implemented, evaluations are now often performed be-
fore they are implemented. The goal is to determine
if the intervention will improve the system outcomes
before a large investment is made and society has been
interrupted [5]. Furthermore, predictive evaluations can
be used to evaluate if the improvement is large enough
to outweigh the downsides of the intervention. One of
the challenges is to accurately represent the real-world
system with computer models. When the system has
not been represented accurately, an intervention can
work well in the simulations, but may under-perform
in reality. In theory, the more extensive the model, the
more accurate the prediction, but in reality this is often
not feasible due to the financial constraints to build a
complex model and the computational constraints to
simulate it. Therefore, a balance between simplifying
and detailed modeling is required.

When it comes to engineering systems interventions,
there is a real need to get it right. Engineering Sys-
tems are inherently socio-technical, they impact and are
impacted by people. Furthermore, they are expensive
to build and change. This chapter discusses both the
predictive as well as the post-implementation evaluation
of engineering system intervention.

C. Relation of this chapter to the previous chapters

Placeholders for the editor. TBD.

o Why this handbook?
o Why this chapter?

D. Chapter Outline

o What is an Intervention? In order to evaluate engi-
neering system interventions, first the word “inter-
vention” must be understood. Engineering systems
are most often legacy systems, and any change to the
system is inherently an intervention of some type.
Section II discusses systems and the different types
of interventions.

o Evaluation Requirements. Artifacts, systems, and
other things can be measured in one of two ways. (1)
Direct measurement and (2) indirect measurement.
These two types of measurement bring along their
own set of specific requirements in order to result
into a holistic and appropriate evaluation of the en-
gineering system intervention. Section III discusses
the the fundamentals of measurement and their
application to engineering systems.

o Comparing Evaluation Methods. Evaluation of en-
gineering systems interventions requires a deep un-
derstanding of the impact of the intervention on
the outputs of the system. Section IV provides an
overview of three approaches to intervention evalu-
ation methods.

o Model-Based Intervention Evaluation. Finally, the
chapter concludes with a discussion around the im-
portance of data and systems theory in the evalua-
tion of engineering systems. Model-based evaluation
approaches leverage theory to enable intervention
evaluation for engineering systems. Section V pro-
vides an overview of some of the most important
system modeling methods.

II. WHAT 1s AN INTERVENTION?

This section introduces a holistic understanding of the
meaning of interventions. This is realized by first summa-
rizing the description of a system to define a consistent
framework. Based on this framework, for the purposes of
this chapter, a definition of interventions and a discussion
around the types of interventions are provided. The type
of intervention is critical when making a decision about
the type of evaluation method, as discussed in Section
Iv.

A. Describing Systems

Engineering Systems, also referred to as socio-
technical systems, are complex systems at the intersec-
tion of physics, management, and social sciences [1]. The
evaluation of engineering system interventions relies on
accurate and consistent measurement of the system. As
shown in Figure 1, this chapter adopts the approach
of many STEM disciplines where systems are mathe-
matically described as a system of differential algebraic
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equations (DAEs) that define the relationship between
the inputs u and the outputs z [6], [7]. The system is also
said to have states x, algebraic states y, and parameters
A. The vector functions f(-), g(-), and h(-) are differential
equations, algebraic equations, and output equations re-
spectively. While a more complex model based upon the
hybrid dynamic system literature is possible, a system
of differential algebraic equations serves the purposes of
this discussion.

Inputs (u) Outputs (z)
—— ——
Socio-technical
| Engineering System |-
(open)

——- —
x=f(x,y,u, 1)
0=9g(x,y,u, )
z=h(x,y,u, 1)

Fig. 1. A mathematical and graphical representation of an arbitrary
engineering system.

In addition to the above description, this chapter re-
quires the introduction of four systems thinking abstrac-
tions: (1) system context, (2) system function, (3) system
form, and (4) system concept [1], [8]. These abstractions
support the classification of intervention types and their
accompanying evaluation methods.

1) System Context: The system context is the set of
interrelated conditions in which the system exists or
occurs [9]. Sometimes, it is also referred to as the system
environment: “All that is external to the system” [10]. The
field of Engineering Systems emphasizes that the system
does not operate in a vacuum, but rather is solidly placed
in its context. When an intervention is evaluated, the
impact of the system on the context is critical to truly
understand the system’s performance. Sometimes, these
outputs are neglected with severe consequences (e.g.
climate change). Naturally, the context also influences
the system itself and often, it determines the success of
the intervention.

2) System Behavior: System behavior is the response
of system outputs to a change in system inputs or
parameters. It reflects the processes, or function of the
system: “what the system does”. The system inputs are
predominantly a result of the system context, whereas
the parameters are internal to the system. In the context
of Engineering Systems, the system behavior consists of
the behavior of the engineering artifacts and the humans
that interact with the system.

3) System Form: System form is the description of
a system’s component elements and their relationships.
The system structure also defines the presence (but not
values) of system states x, algebraic states y, parameters
A, inputs u and outputs z. By adding or removing

elements to/from the system, the number of equations
in the vector functions f(-), g(-), and h(-) changes.

4) System Concept: The description of the system as a
whole relies on the combination of the system behavior,
and the system structure. System concept is the mapping
of system function onto system form (also called the
allocated architecture [11]). Consequently, a system of
equations can represent system concept. The behavior
of the system results from the coupled equations.

B. Describing Interventions

For the purposes of this chapter, “intervention” is
defined as:

Definition 2. Intervention: [9] The act of interfering
with the outcome or course especially of a condition or
process (as to prevent harm or improve functioning).

In the context of engineering systems, interventions
intend to change the system so as to improve the out-
come of the engineering system. Two types of interven-
tions are recognized: behavioral and structural.

1) Behavioral Interventions: Behavioral interventions
aim to change the outcomes of a system by adjusting the
values of the system inputs and system parameters while
the structure of the system is untouched. As a result,
behavioral interventions are often relatively affordable.
Decisions to change the operating procedure or policies
around a system may take a long time and are sometimes
hard to implement, but the upfront capital investment is
limited because no fundamental changes in the system
are necessary.

An example of an intervention based on system inputs
is a policy change that increases the ethanol percentage
in gasoline. When a different ethanol/gasoline mixture
enters the system, the emissions of the transportation
system will change as a consequence.

An example of an intervention based on system pa-
rameters is the reduction of ticket prices in a public tran-
sit system. Ticket prices are internal to the engineering
system and are set as a result of a policy decision. As a
consequence of this parameter change, the total public
transit ridership may increase/decrease, with cascading
impacts such as: less/more traffic, less/more emissions,
etc.

2) Structural Interventions: Structural interventions
aim to change the structure of the system; its parts and
the relationships between them. These changes are often
physical and require large upfront capital investments.
Furthermore, structural interventions require a revision
of the operating procedures and policy around the sys-
tem, since the policies of the old system may no longer
apply.

An example of adding elements to the system is
the addition of a road in a town. This road adds an
“equation” and a “state.” For example, a description of
the traffic flow on the road as a result of the number of
vehicles on the road. Such a structural intervention leads
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to a revision of the local traffic ordinances. For example,
at the connecting intersections a new speed limit may be
introduced to reduce the risk for turning vehicles.

An example of adding variables is the consideration of
electric vehicles for parking lot design. Electric vehicles
require charging facilities on the parking lot, which
changes the calculation of the required parking spots in
building code.

This section first introduced a common framework for
describing systems using four systems thinking abstrac-
tions. These distinct abstractions are the basis for the
selection of the appropriate method for evaluation of the
intervention (to be discussed in Section IV).

III. REQUIREMENTS FOR EVALUATING INTERVENTIONS

This section discusses measurement as a foundation
for the evaluation of engineering system interventions.
Interventions aim to improve the existing engineering
system. Consequently, the evaluation of interventions
requires a comparison of (at least) the current system
and the system with the intervention. Such a compari-
son requires the definition of a common mathematical
framework (or standardizing space) to describe both
systems. The process of first defining this framework
and then describing the systems within the framework
is called “measuring.”

This section first discusses the fundamentals of mea-
surement including an overview of the generic mea-
surement process, measurement scales, and different
measurement strategies. The second part of this section
then discusses different approaches to measurement,
and specifically, the differences between measuring a
technical system and an engineering system. Based on
this foundation in the measurement of engineering sys-
tems, Section IV discusses the evaluation methods for
engineering system interventions.

A. Measurement Fundamentals

The measurement of engineering systems is critical
for informed decision-making. As shown in Figure 2,
without measurement, the real world presents us with
an empirical system that exhibits certain phenomena
called empirical results. These results can be viewed as
qualitative or anecdotal evidence. Nevertheless, the link
between the empirical system and its empirical results
is often not well-understood and consequently the as-
sociated intelligence barrier prevents effective decision-
making. Instead, the empirical system is first measured so
that real-world phenomena are assigned their associated
numerical values in a formal (mathematical) system.
Mathematics, and statistics more specifically, are then
used to determine numerical results in the formal sys-
tem. These are, in turn interpreted, to become empirical
results. Without an accurate and consistent approach
to measuring the empirical system, the foundation for
the decision-making process is flawed. Consequently,
the empirical and formal systems must posses methods

by which their respective objects can be related and

ultimately compared.

Empirical Formal
Relational Measurement —  Relational

System System

- - Statistics /
Intelligence Barrier Mathematics
Empirical Interpretation Numerical

Result Results

Fig. 2. A Generic Measurement Process [12]

More specifically, the Empirical Relational System
contains a nonempty set of empirical objects that are to
be measured, with relations between and closed binary
operations on the empirical objects. Note that these
relations are independent of the measure function. The
Formal Relational System is a nonempty set of formal
objects with relations between and closed binary opera-
tions on the formal objects.

Definition 3. Measurement [13], [14]: “Measurement is
the process of empirical, objective assignment of symbols
to attributes of objects and events of the real world, in
such a way as to represent them, or to describe them.”
— Finkelstein, 1982

Measurement consists of three elements: (1) a set
of measurables, (2) a standardizing space, and (3) a
measure function. The set of measurables is defined as a
set of objects with a specific attribute type. The standard-
izing space is a basic construct to which all the mesaure-
ments can be compared. Finally, the measure function
performs the empirical and objective assignment as men-
tioned in the definition of measurement. A consistent
measure function ensures a consistent measurement of
empirical relational systems to formal relational systems.
If two empirical systems have been translated to formal
systems with the same measure function, the formal
systems can be compared rather than their respective
empirical systems.

Definition 4. Measure [12]: A measure (or measure
function) is a one-to-one function that acts on a set of
(empirical) objects and returns a formal object.

Note that often the term “measure” and “metric” are
confused. Metric, however, is defined as:

Definition 5. Metric [15]: A metric, also called a dis-
tance function, defines the distance between a pair of
elements in a set.

Not all empirical relational system can be measured
in the same way. For example, human behavior and
a block of iron do not have the same attributes. The
type of empirical system, with the related attributes,
determines the type of measurement scales that can
be used to measure the system. This impacts the type
of numerical results downstream in the measurement
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TABLE I
CLASSIFICATION OF MEASUREMENT SCALES [12]

Scale Type | Applicable Statistics | Example

Nominal Non-parametric Football player uniform
numbers

Ordinal Rank Order & above 1Q

Interval Arithmetic Mean & above | Celsius Scale

Ratio Percentage & above Kelvin Scale

Absolute Additivity & above Counting

process, because not all mathematics and statistics can
be used for all measurement scales. The scale types, with
applicable statistics and examples are presented in Table
I. Engineering systems inherently combine physics-based
systems with human behavior and economics. Conse-
quently, the measurement of the engineering system
requires a combination of the measurement scales.

From a practical perspective, there are two measure-
ment strategies: (1) direct measurement and (2) indirect
measurement. Direct measurement is applied when the
desired property is both “simple” and an “output” of
the system. As a result, the property is easily accessible
and there are often sensors that directly convert the
desired property into a numerical result. Fundamental
measures like length, time, voltage, and current are
examples. However, these properties are rare, especially
for engineering systems. Indirect measurement applies
to properties that are not fundamental. These properties
require the combination of fundamental properties, that
are considered “internal” to the system, into a formal
model. The formal model is considered the standardizing
space and mathematics and statistics are applied to this
model to extract the desired numerical results.

B. Engineering System Measurement

During the past century, engineering solutions have
evolved from engineering artifacts to engineering sys-
tems. Consequently, the solution requirements have
changed. Instead of merely “functioning” artifacts that
performed their (singular) task, engineering systems
perform many services composed of separate tasks.
Furthermore, engineering systems include non-technical
elements, more specifically humans. It is, therefore,
essential to evaluate engineering systems beyond their
technical aspects and include impacts of the system on
its environment.

This section describes Engineering System measure-
ment with a tiered approach. Engineering Systems are
evaluated at several levels of granularity. First, the fun-
damental artifacts are evaluated based on the perfor-
mance of their specific task with Technical Performance
Measures (TPMs). Then, the combination of these ar-
tifacts provides a service. The performance of these
services is measured with Measures of Performance
(MOPs). The first two types of measures, however, do
not truly address the socio-technical nature of Engi-
neering Systems. Therefore finally, Measures of Effec-
tiveness (MOEs) were developed at the highest level

of granularity for Engineering Systems. These consist
of multiple services and socio-technical interfaces. For
the Engineering Systems literature, a subset of these
measures is especially important; life cycle properties or
ilities.

Definition 6. Technical Performance Measures [16]:
“TPMs measure attributes of a system element to deter-
mine how well a system or system element is satisfying
or expected to satisfy a technical requirement or goal.”

Definition 7. Measure of Performance [16]: “The mea-
sures that characterize physical or functional attributes
relating to the system operation, measured or estimated
under specified testing and/or operational environment
conditions.”

Definition 8. Measure of Effectiveness [16]: “The oper-
ational measures of success that are closely related to the
achievement of the mission or operational objective be-
ing evaluated, in the intended operational environment
under a specified set of conditions; i.e., how well the
solution achieves the intended purpose.”

Overall operational success criteria (Measures of Ef-
fectiveness) include: Mission performance, safety, oper-
ability, operational availability, etc. These measures of
effectiveness are often a quantitative means of measure
a degree of adherence to requirements.

Finally, in the context of engineering systems, life cycle
properties or ilities need to be addressed as a subset of
the MOEs. The definition of ilities is:

Definition 9. “ilities” [1] “The ilities are desired prop-
erties of systems, such as flexibility or maintainability
(usually but not always ending in “ility”), that often
manifest themselves after a system has been put to
its initial use. These properties are not the primary
functional requirements of a system’s performance, but
typically concern wider system impacts with respect to
time and stakeholders than are embodied in those pri-
mary functional requirements. The ilities do not include
factors that are always present, including size and weight
(even if these are described using a word that ends in
“ility”).”

This section described (1) how to measure and (2)
what to measure. The former was described through the
process of measurement and the latter was described
through three categories of engineering system measures
in increasing scale. The chapter now builds on this
knowledge to compare evaluation methods for Engineer-
ing Systems.

IV. CompParRING EvALUATION METHODS

This section discusses the different types of evalua-
tion methods for engineering system interventions. As
discussed in Section II, Figure 1, engineering systems
create a relationship between inputs and outputs. The
interventions aim to improve the outputs of the system,
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given a set of inputs. The goal of the evaluation methods
is to predict how an intervention changes the outcome
of the engineering system. Generally, the relationship be-
tween inputs and outputs of systems have been studied
using one (or a combination) of three approaches.

The experimental approach was used at the origin
of science. In this approach a hypothetical relationship
is tested through a set of experiments in which either
the inputs are changed, or the system is changed [17].
The experimental approach is generally performed in a
controlled environment.

With the rise of widely available (historical) data on
engineering systems, the data based approach became
viable. In this approach, instead of developing a con-
trolled experiment with the system, existing data is used
to derive a relationship between inputs and outputs of
the system [18].

Finally, when all the parts of the engineering system
are well-understood, a theoretical model can be built to
reflect the existing knowledge of the system [1]. This
model-based approach combines all the parts of the sys-
tem to explain the relationship between the inputs and
outputs of the system. Interventions can be evaluated
by testing the response of the model to changes in input
data and the parts of the model.

These approaches are not mutually exclusive and are
often combined to grasp the full complexity engineering
systems. Each of these evaluation methods has been
adopted across fields, both in academia and industry.
Note that all approaches can be used to study inter-
ventions both qualitatively and quantitatively. The mea-
surement scale depends on the type of intervention and
the desired analyses that support the interpretation of
the results. This section continues to discuss each of the
evaluation methods.

A. Experimental Approach

The experimental approach for the evaluation of en-
gineering system interventions relies on the comparison
of two sets of empirical results before and after the
intervention. The main benefit of this approach is that
the results are real. As long as the measurement process
is kept constant for both measurements, the empirical
results reflect a change in the objects of the empirical
relational system (or real world) [19]. Furthermore, the
results from such an experimental approach hold for
both behavioral and structural interventions. Note that
experiments are also valuable to study specific pieces of
engineering systems with small scale experiments, often
in a well-controlled environment.

The experimental approach, however, has numerous
disadvantages. Engineering systems are generally large,
critical systems intertwined with the daily routine of
the population [20]. Experimenting with these systems
to find out which approach works best, potentially re-
building systems multiple times, is a tremendous waste
of money [17]. Furthermore, the execution of such an

experiment is time consuming, and potentially reckless.
The experimental approach should, therefore, only be
used sparingly and mainly to inform the planning of
future interventions (e.g. as in the case of pilot-projects)
[21]. The value to provide “lessons learned” to fu-
ture interventions should not be overestimated. Another
downside of the experimental approach is that it is a
black box model. The system as a whole is overhauled,
but it may be unclear how external factors have changed
between the time of the baseline measurement and the
post-implementation measurement.

B. Data Driven Approach

The data driven approach to the evaluation of en-
gineering system interventions relies on the definition
of a statistics-based formal relational model between
inputs and outputs. This model can be used to evaluate
a behavioral intervention by estimating the response of
the system to changing inputs. Generally, six types of
data analysis are distinguished [22]:

Descriptive data analyses aim to describe the data
without interpretation [23]. The most commonly used
statistics in quantitative descriptive analyses are the
sample mean and the sample standard deviation. A sum-
mary statistic for nominal measurements is a frequency
analysis.

Exploratory data analysis provide a description and
interpretation of the data aimed at providing insight into
a problem [24]. The goal of exploratory data analysis
is to find the “story” of the data, detect patterns and
trends, and inform deeper study of the data. Some of the
most common techniques include graphical representa-
tion of the data with boxplots, dotplots, or kernel density
functions. Exploratory data analysis can also include
preliminary model building and subset analyses.

Inferential data analysis aims to provide general
facts about a certain type of systems given a limited
amount of data [25]. It quantifies the correlation between
measurements to provide insight in the generalizability
of the patterns in the data. The two major branches in
inferential data analysis are estimation and hypothesis
testing. The former contains the main methods of point
estimation and interval estimation. The latter contains
a wide range of tests appropriate for different types of
analyses. A non-exhaustive list of hypothesis tests is pro-
vided below [26]: 1) t-Test for independent means, 2) t-
Test for Correlation Coefficients, 3) One-way ANOVA,
4) Analysis of Covariance, 5) Two-way ANOVA, 6) One-
way repeated Measures ANOVA, 7) t-Test for Regression
Coefficients, 8) Chi-Square for Contingency Tables.

Predictive data analysis measurements of a subset to
predict the measurement on a single person or unit. The
algorithms in this field are evolving quickly and they
are often classified into supervised learning, and unsu-
pervised learning. Supervised learning aims to learn a
function that couples inputs to outputs from data that
contains both inputs and outputs. A non-exhaustive list
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of supervised learning algorithms is [27]: 1) Support
Vector Machines, 2) Neural nets, 3) Logistic Regression,
4) Naive bayes, 5) Memory-based learning, 6) Random
forests, 7) decision trees, 8) bagged trees, 9) boosted
stumps. Unsupervised learning is predictive data anal-
ysis without a pre-identified output or feedback. Some
typical unsupervised learning examples are [28]: 1) Clus-
tering, 2) Association rules, 3) Self-organizing maps.

The final two methods, Causal data analysis and
Mechanistic data analysis rely on a theoretical un-
derstanding of the measured system and are used in
conjunction with model-based evaluation approaches.
Causal data analysis derives an average effect of one
measurement on another, whereas Mechanistic data
analysis aims to determine the relationship between two
measurements under all conditions.

All analyses can be used to inform the design of the
intervention. However, for the definition of the formal
relational model that “predicts” the relationship be-
tween inputs and outputs after the intervention, only
the last three types are appropriate. Note that the sta-
tistical model requires data beyond historical data of
the original system [18]; for example from other systems
comparable to the post-intervention system.

The benefits of the data driven approach are that it is
both cheap and quick. The cost of collecting and storing
data has plummeted while the availability has soared.
In combination with rapidly evolving computational
resources that can analyze the data, the creation of a
data based model has become very affordable. Further-
more, the rise of cloud computing enable extremely fast
analysis of the data.

The downsides of the data driven approach are related
to the fact that statistical models are a black box [18],
[29]. As a result, it is impossible to truly understand
the elemental dynamics that define the overall system
behavior. This is especially true for more advanced and
automated statistical models based on neural networks
and deep learning [30]. As a result of the opaque nature
of the model, the study of structural interventions is not
possible. The model loses its generalizability when the
basic equations (or assumptions) are changed. Finally,
the data driven models rely on the assumption that the
system is stationary. In order to analyze interventions
that break the “business-as-usual” case, data based ap-
proaches to intervention evaluation are insufficient.

In conclusion, data driven models are predominantly
appropriate to analyze behavioral interventions in sys-
tems where the “mechanistic” science is not fundamen-
tally understood. However, the analysis of structural
interventions, or interventions that break the assumption
of “business-as-usual” in any way, cannot be performed
with data driven evaluation approaches.

C. Model-Based Approach

The model-based approach to the evaluation of engi-
neering system interventions relies on the construction

of a formal relational system based on knowledge of
the empirical system [31]. The formal relational system
is constructed to represent the dynamics of each of
the elements in the empirical relational system. The
combination of each of the elemental models create full
system results that match the observed numerical results
as derived from the measurement of the real-world sys-
tem. The intervention is evaluated by implementing new
or changed elemental models in the formal relational
system. The empirical results interpret the numerical
results of the two formal relational systems. Section V
provides a closer look at the different model-based ap-
proaches to evaluating engineering system interventions.

The main benefit of the model-based approach is
its transparency [32]. The elements in the models are
known and have individual properties. The properties
may include first principle-based dynamics. Further-
more, the model-based approach supports the evaluation
of both behavioral and structural interventions. The
model elements may be adjusted in their behavior, or
be changed all-together.

The main downside of the model-based approach is
that a deep knowledge of the engineering system is
required to build a model that matches the real-world
measurements [32].

In conclusion, model-based intervention evaluation is
specifically valuable when used to represent a system
that is well-known. It provides a transparent approach
to the evaluation of both structural and behavioral in-
terventions. In recent years, a discussion around the
“end of theory” has emerged. The chapter addresses
this discussion explicitly in the next section (Section V),
together with an in-depth discussion of the model-based
intervention evaluation methods. This section discussed
three central approaches to the evaluation of engineering
system interventions with their respective strengths and
weaknesses. The next section provides extra detail on the
last of these approaches.

V. MoDEL-BASED INTERVENTION EVALUATION

The previous section provided a comparison of the
different methods for the evaluation of engineering sys-
tem interventions. This section takes a closer look at
the model-based intervention evaluation methods. Some
literature has posited the “end-of-theory” given the ex-
plosion in the availability of data [33]. This section,
however, demonstrates that theory plays an essential
role in the future of engineering systems [34]-[36]. The
discussion is structured in congruence with the classifi-
cation of modeling methods as displayed in Figure 3.

The development of theory is critical to the future of
engineering system design and intervention evaluation
because ...

e ... it defines meta-data features in data collection.

e ... it ensures a deep understanding of the modeled
system so that both structural and behavioral inter-
ventions are understood.
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Fig. 3. Classification of modeling methods for the evaluation of engineering system interventions.

e ... it ensures a deep understanding of the modeled
system such that the knowledge gaps are explicit. It
requires assumptions and has the ability to inform
future research (to test those assumptions).

Model-based evaluation of interventions do not forego
the use of data and experiments. Rather, they leverage
those in testing assumptions and creating a deeper un-
derstanding by extensive simulation and testing.

A. Graphical Models

The first class are graphical models. These models
have been used to describe a wide range of systems, from
technical to socio-economic'. Graphical models are qual-
itative in nature and they are often used to communicate
the structure of a system. Furthermore, they are also
used to communicate qualitative information and the
ontology of a system or a class of systems. Furthermore,
graphical models are not limited in the heterogeneity of
the modeled system.

The downside of graphical models is the lack of sup-
port for quantitative analyses of the models. However,
some methods have been developed to gain quantitative
insights based on graphical modeling methods. These are
often developed as part of a specific software package for
the modeling method.

Below, a number of graphical modeling methods are
introduced as a rough overview of the landscape. This
list is not exhaustive but it provides the reader with a
starting point.

IDEF0 diagrams enable the decomposition and ar-
chitecture of system function [37]. For each function,
IDEFO lays out the inputs, controls, and mechanisms
required to create the output. For clarity, the method
relies on aggregation and decomposition of processes
to limit the number of processes to six per layer of
modeling abstraction. IDEFO0 is one of the IDEF fam-
ily of modeling languages. These languages have been
developed starting in the 1970’s with funding from the
U.S. Air Force.

INote that this definition is distinct from the graphical models in the
field of machine learning in which graphical models refer to “graph-
based” models, as described in Section V-B.

Unified Modeling Language (UML) was developed
to provide a consolidated approach to object-oriented
modeling methods [38]. UML was originally intended for
software and firmware, but its strengths were recognized
and the methods were applied to other fields.

Systems Modeling Language (SysML) borrows many
features of UML and customizes them for cyber-physical
systems. These include block definition diagrams and
activity diagrams. SysML also includes a new set of
diagrams to address the physical nature of these systems
(e.g. the internal block definition diagram) and direct
support for requirements engineering [16]. SysML is the
most commonly used modeling language among systems
engineers.

Model-based Systems Engineering created the Systems
Modeling Language (SysML) as an abstracted graphical
model with sufficient ontological breadth to integrate
and synchronize more detailed domain-specific engi-
neering models. SysML is not meant to develop complex
mathematical models that provide engineering insight,
as it is qualitative and graphical in nature. Rather, SysML
provides systems engineers and project managers with a
tool by which to quickly understand the overall structure
and behavior of a system and its component modules so
as to coordinate its engineering development in large
and often multiple engineering organizations.

SysML leverages multiple modeling frameworks to
represent the full breadth and complexity of an engi-
neering system. This multitude of diagrams allows the
modeler to separate, for example, form from function to
study the processes in a solution neutral environment.
The downside of using SysML is that the modeler needs
to leverage the right diagrams to model the system.

Object-Process Methodology (OPM) has been devel-
oped explicitly for the modeling of general purpose sys-
tems with both system form and behavior in mind [39].
OPM describes form and function in a single diagram,
with a single, consistent hierarchy. OPM has the benefit
of having a single hierarchical model, and using a single
type of diagram to represent the full system. However,
OPM is missing the breadth to capture all aspects of a
system.



HANDBOOK OF ENGINEERING SYSTEMS DESIGN (PREPRINT VERSION)

Business Process Model and Notation (BPMN) is
developed to support decision making around business
processes [40]. The goal is to provide a language that
can be intuitively understood by all stakeholders of
the process. BPMN has overlap in functionality with
activity diagrams in SysML, but BPMN is specifically
designed for business processes and activity diagrams
have a much broader applicability.

Causal-Loop Diagrams have been used to describe
socio-technical systems. These use a directed graph ap-
proach to connect (hard and soft) variables as feedback
loops. Causal-loop diagrams are easy to understand by
stakeholders and can enable conversations about the
dynamics of a system. The downside is that causal-loop
diagrams quickly become complex and that the method
doesn’t lend itself for a hierarchical decomposition of
the system. “System Dynamics” is a quantification of
causal-loop diagrams. It was first developed in the '50s
at MIT to model nonlinear behavior with stocks, flows,
and feedback loops [41]. Over time, it has evolved to ad-
dress a variety of dynamically complex systems. System
Dynamics can be used both qualitatively, to describe and
model systems, or quantitatively, to simulate dynamic
behavior with the VenSim or Stella software packages.

B. Quantitative Structural Models

Quantitative structural models mathematically de-
scribe a systems structure.

Definition 10. System Structure [12], [32] is defined
by the parts of a system and the relationships amongst
them. It is described in terms of 1.) the system boundary,
2.) the formal elements of the system 3.) the connections
between them 4.) the functional elements of the system
and 5.) their allocation to the formal elements.

Quantitative structural models have been used exten-
sively to describe both social and technical systems. In
all cases, they rely heavily on graph theoretical concepts.
1) Graph Theory:

A Network (or graph §) is a general means of repre-
senting patterns of connections or interactions between
parts of a system [42]. The parts of the system are
represented as nodes (or vertices V). The connections
or interactions are represented as lines (or edges &).
In addition to this set-theoretic definition, graph theory
provides incidence and adjacency matrices as means of
algebraic analysis. Networks are used to study systems
in a wide variety of disciplines including the Internet,
power grids, transportation networks, social networks,
citation networks, biochemical networks, and neural net-
works among others. Objectively speaking, the definition
of a graph G = {V,E} captures only the first three (of
five) parts of system structure. Consequently, one of the
major shortcomings of Graph Theory is the failure to
represent heterogeneity in networks as a result of the
simplicity of its mathematical structure. Instead, many
works attribute additional data features to graphs to
expand their utility.

The Design Structure Matrix, for example, is a type
of network modeling tool [43] that seeks to distinguish
the different types of interconnections within a system.
The four types of Design Structure Matrix models are
1) product architecture, 2) organization architecture,
3) process architecture, and 4) multidomain architecture.

Multilayer Networks expand on existing network
theory to accommodate the study of networks with
heterogeneity and multiple types of connections [44].
Over the past decade, numerous methods have tried to
provide a consistent approach to model these networks-
of-networks. However, as discussed by Kivela et al, all
these multilayer network methods have their respective
modeling limitations.

2) Hetero-functional Graph Theory:

Hetero-functional graph theory has emerged over the
past decade to be the first quantitative structural model
that captures all five parts of system structure [32]. It
enables the structural modeling of a heterogeneous large
flexible engineering system and explicitly accommo-
dates all five types of system processes (i.e. Transform,
Transport, Store, Exchange, and Control) and all five
types of operands (i.e. Living Organisms, Matter, En-
ergy, Information, and Money) that regularly appear in
engineering systems [1]. Furthermore, Hetero-functional
Graph Theory has been used as the underlying structure
for dynamic system models across many different appli-
cation domains including power, water, transportation,
production, and healthcare systems. It has also been used
to study the interdependencies of these systems within
the context of interdependent smart city infrastructures.

C. Quantitative Behavioral Models

Quantitative behavior models can be broadly classified
as 1) Continuous Time Behavioral Models, 2) Discrete
Time Behavioral Models, 3) Discrete Event Behavioral
Models, and 4) Hybrid Dynamic Behavioral Models.

1) Continuous Time Behavioral Models:
Continuous-Time and Discrete-Time Behavioral Models
are closely related and can both be further classified into
time-varying vs. time-invariant and linear vs. non-linear
models. For more detail about that decomposition the
authors refer the reader to the first chapter in [45].

Systems of Ordinary and Partial Differential Al-
gebraic Equations (ODEs, PDEs & DAEs) are used
to describe continuous time behavioral models. ODEs
are often used to describe “lumped” systems while
PDEs are used to describe distributed behavior (e.g. the
traffic density along a stretch of road). Because it is
often analytically or computationally intractable to use
a truly distributed PDE, systems of ODEs arranged in a
graph structure are often used instead. Bond graphs and
linear graphs, for example, are well-known techniques
that superimpose the constitutive laws of engineering
physics onto the structure of a physical engineered sys-
tem. Furthermore, pseudo-steady-state assumptions are
often made so that a subset of the differential equations
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are effectively replaced by algebraic equations to form
differential algebraic equations as described in Section
II. Several software packages have been developed to
simulate the systems of DAEs. These include Simscape
by Matlab, OpenModelica and Dymola based on the
Modelica language.

Agent-Based Modeling (ABM) goes beyond the dy-
namic laws of engineering physics to study socio-
technical and socio-economic systems. ABM lever-
ages dynamic interactions between autonomous entities
called agents [46]. As the agents interact with each other,
their individual processes and functions result in an
emergent system behavior. This “bottoms-up” approach
to modeling results in a number of benefits. ABM has
the ability to predict emergent phenomena that often
defy normal intuition. Furthermore, ABM provides a
natural description of a system, especially for socio-
technical systems in which individuals make decisions
about their use of technical systems. Finally, ABM is
flexible in that it can be expanded for the number of
entities and their interactions. It also allows for changing
levels of aggregation of agents in agent-groups.

2) Discrete Time Behavioral Models:

In contrast to the continuous time models, discrete time
models are based on sampled data points or signals in
digital form [47]. The rise of digital information tech-
nology has increased the need for a deep understanding
of discrete time behavior and the corresponding mathe-
matics.

Models of engineering systems can be developed from
theory using either continuous or discrete mathemat-
ics. However, whenever data is collected, discrete-time
models are the natural first choice. In either case, both
types of models can be readily transformed from one
to the other. In the case of linear systems, discrete-
time systems of equations can be solved algebraically
with the use of the Z-transform in much the same way
that continuous-time systems can be solved algebraically
with the Laplace transform.

The decision to use either continuous or discrete math-
ematics to model an engineering system depends primar-
ily on the role of data and its discretization. In many
cases the data is intrinsically discretized, or the data-
collector has made pseudo-steady-state assumptions that
force discrete-time step-wise evolution of algebraic equa-
tions. In other cases, data is not available and so ideal-
ized differential equations can be used. Finally, digital
systems are more accurately represented with discrete
time models, and engineering physics are generally more
accurately represented with continuous-time models.

3) Discrete-Event Behavioral Models:

Discrete event behavioral models move from a time-
driven view of the world to one that is event-triggered. In
such a case, the system remains in a discrete state until
such a moment where an event causes the system to flip
into another state. Many discrete-event engineering sys-
tems exist; particularly as a result of automation where
the underlying code is itself event-driven. Furthermore,
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discrete-event models always have discrete-state that is
usually denoted by integers (rather than real or complex
numbers).

Automata are one type of discrete-event model that
are defined by a finite and countable set of discrete-
states that each represent some phenomenon (that is
often qualitative in nature). This includes on/off states
as well as hot/cold or red/yellow/green. These states
are described by nodes. Meanwhile, arcs are used to
describe the event triggers that allow a switching be-
havior from one state to another. These triggers can be
either endogenous or exogeneous rules but are often
described by Boolean expressions (i.e. if x> 0 then switch
from State 1 to State 2). While Automata have deep
roots in theoretical computer science, they have since
found broad application in describing the operational
behavior of many engineering systems that have an
underlying discrete decision-space. Automata are also
often useful to describe operational modes of systems
(e.g. normal, emergency, and restore) [45]. Despite these
many strengths, the primary weakness of automata is
that they have a centralized notion of state; and conse-
quently all the states must first be enumerated in order
for the complete automata to be well-defined.

Markov Models are a type of stochastic automata.
They have been used to describe decision-making pro-
cesses in a dynamic and stochastic environment [48].
Markov models have one of a finite number of states and
stochastic events causes transitions between states. The
evolution of state is tracked with each passing event or
decision. Markov Chains are a type of Markov model in
which the probabilities of transitions are fixed over time.
These Markov models can be used to support decision-
making in that they can help to estimate the effects
of a certain decision, including subsequent decisions of
others actors in the system.

Petri nets are another type of (deterministic) discrete-
event model. Unlike automata, they have a decentralized
description of state. In their simplest form, Petri nets
consist of a set of places that define a state space, tran-
sitions that define events between a given pair of places,
and a set of directed arcs that connect places and tran-
sitions [45]. In effect, these arcs create a bipartite graph
between the sets of arcs and events. Furthermore, tokens
are stored in places and are moved as each transition is
“fired”. The state of the system as a whole is described
by a vector showing the number of tokens in each place.
While Petri nets and automata have equal modeling
power in that one can be mathematically transformed
from the other (without loss), Petri nets can describe
a relatively large number of automaton states with a
relatively small number of places. Furthermore, because
Petri nets are often represented graphically they often
lends themselves to modeling distributed engineering
systems such as warehouses, manufacturing systems, or
supply chains more generally. Finally, in recent decades,
the Petri net literature has expanded to accommodate
time-driven dynamics through Timed and Time Petri
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Nets. They have also incorporated various types of
stochasticity with stochastic and fuzzy Petri nets.

4) Hybrid Dynamic Behavioral Models:
Hybrid dynamic behavior models combine the attributes
of continuous/discrete time models with discrete-event
models [49]. Generally speaking, they consist of a top
“layer” described by either an automata or Petri net
whose dynamics are either deterministic or stochastic.
The bottom layer has a system of differential algebraic
equations for each discrete state defined in the top layer.
A classic example is the thermostat in a house. When the
temperature is above a specified threshold, the heating
system is idle. However, as soon as the temperature
drops below the threshold, the heating system is acti-
vated and starts to heat the house. The model that is
used to describe the “idling” state is distinct from the
model that describes the “heating” state of the system.

Although hybrid dynamic systems have tremendous
relevance to the understanding of engineering systems
and their interventions, they remain at the cutting-edge
of systems research. First, hybrid dynamic models often
rely on discipline-specific DAE models. Consequently,
some researchers resort to strapping together multi-
ple (often off-the-shelf) simulators within co-simulation
environments. In other cases, researchers develop cus-
tom simulators in order to address the specific needs
of the engineering system under study. The literature
contains many such simulators [50]. Finally, from an
analytical perspective, there is a severe lack of the-
ory that combines both discrete and continuous states.
Consequently, many of the typical analytical methods
applied to continuous-time systems (e.g. stability theory)
or discrete-event systems (e.g. reachability analysis) can
not be readily applied to hybrid dynamic systems.

VI. ConcrusioN AND FUTURE WORK

This chapter has provided an thorough overview of en-
gineering system interventions and their evaluation in an
application-neutral language. It distinguished between
interventions that change system behavior and those that
change system structure. The type intervention dictates
the type of evaluation and measurement that can be ap-
plied; be it experimental, data-driven, or model driven.
The chapter was brought to a close with a taxonomy of
engineering system models including graphical, quanti-
tative structural, and quantitative behavioral models.

In regards to the last of these, hybrid dynamic mod-
els, while complex, have the greatest applicability to
the growing complexity of today’s engineering systems.
There is a profound need to develop engineering system
models that capture both its continuous-time as well
as discrete event dynamics for the simple reason that
engineering systems are continually changing structure
while also evolving their system behavior. Such models
grow our ability to practically study these engineering
systems from a simulation perspective. That said, con-
certed theoretical effort can serve to provide deep analyt-
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ical and generic insights into the structural, behavioral,
and life-cycle properties of these systems.

The recent COVID-19 pandemic has highlighted the
need for a deep understanding of both the technical
and the social side of engineering systems. The engi-
neering aspects of the dynamics of the pandemic are
well-understood. For example, the global transportation
system has enabled the virus to spread rapidly over the
globe. However, the impact of human behavior as part of
social interactions is still unclear. Based on experiments
and data collection, scientists have tempted to infer
how the virus is most likely to infect other humans.
The interaction between the well-understood technical
side of the pandemic and the poorly understood social
(human) side can be accurately represented by a hybrid
dynamic model.

In addition to hybrid dynamic models, hetero-
functional graph theory provides an avenue to investi-
gate the complete structure of an engineering system.
Such an approach does not require the extensive effort
that is often needed to develop simulations of hybrid
dynamic systems. Instead, UML/SysML models can be
straightforwardly developed and then instantiated and
translated automatically to produce hetero-functional
graphs. In recent years, the network science community
has provided an explosion of computational results over
(traditional) graphs. There is great potential to apply
similar approaches to hetero-functional graphs and cap-
ture the true heterogeneity found in modern engineering
systems.
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